Difference between Cyclic and Non-Cyclic Photophosphorylation
How are ATP, ...
Question
How are ATP, NADPH and oxygen produced in noncyclic photophosphorylation.
Open in App
Solution
Non-cyclic photophosphorylation takes place in the granal thylakoids of chloroplasts. Non-cyclic photophosphorylation involves both Photosystem I and Photosystem II. These two photosystems work in series, first PS II and the PS I. The two photosystems are connected through an electron transport chain. Both ATP and NADPH+H+ are synthesised by this kind of electron flow. First, in PS II, the P680 molecule absorbs 680 nm wavelength of red light causing electrons to become excited and jump into an orbit which is farther from the atomic nucleus.
These electrons are picked up by an electron acceptor which passes them to an electron transport system of cytochromes. This movement of electrons is downhill on redox potential scale. The electrons are then passed onto the pigments of PS I, without being used as they pass through the electron transport chain. Simultaneously, electrons in the reaction center of PS I (P700) are excited when they receive light of wavelength 700 nm and these electrons are transferred to another acceptor molecule that has a greater redox potential. These electrons are then moved downhill again to a molecule of NADP+. The addition of these electrons reduces the NADP+ to NADPH+H+.
The electrons that were removed from PS II must be replaced. This is achieved by electrons available due to the splitting of water. The water splitting complex is associated with the PS II, which itself is physically located on the inner side of the membrane. Water is split into H+, [O] and electrons. The protons and oxygen formed by splitting of water are released into the lumen of the thylakoids. The oxygen produced is released as one of the net products of photosynthesis.