First split off your separate expressions into sub-functions.
Let y=t⋅u⋅v
where t=x2+1,u=(x+2)2 , and v=(x−3)3
Then dxdt=2x.
dudx=2(x+2).
By the chain rule, dvdx=3(x−3)2.
The product rule for three terms states.
If y=t⋅u⋅v, and u is a function of x.
Then dydx=dtdx⋅u⋅v+dudx⋅t⋅v+dvdx⋅t⋅u.
So, dydx=2x⋅(x+2)2⋅(x−3)3+2(x2+1)⋅(x−3)3⋅(x+2)+3(x2+1)⋅(x+2)2
Which when you go through the painful process of expansion and simplification, yields:
dydu=7x6−30x5−20x4+160x3−15x2−126x