How do you express sin(3θ) in terms of trigonometric functions of θ?
Finding the required formula:
As we know,
sin(x+y)=sinxcosy+cosxsinycos(x+y)=cosxcosy–sinxsiny
We can write that
sin(3θ)=sin(2θ+θ)=sin(2θ)cos(θ)+cos(2θ)sin(θ)=sin(θ+θ)cos(θ)+cos(θ+θ)sin(θ)=[sin(θ)cos(θ)+cos(θ)sin(θ)]cos(θ)+[cos(θ)cos(θ)+sin(θ)sin(θ)]sin(θ)=2sin(θ)cos2(θ)+sin(θ)cos2(θ)-sin3(θ)=3sin(θ)cos2(θ)-sin3(θ)
=3sin(θ)(1-sin2(θ))-sin3(θ)=3sin(θ)-3sin3(θ)-sin3(θ)=3sin(θ)-4sin3(θ) sin2θ+cos2θ=1
Hence, the value of sin(3θ) is 3sin(θ)-4sin3(θ).