How do you find the derivative of cotx ?
Step 1: Apply quotient rule of differentiation
We know that cotx=cosxsinx
applying the quotient rule of differentiation
ddxuv=vdudx-udvdxv2
putting u=cos(x) and v=sin(x)
ddxcosxsinx=sinxdcosxdx-cosxdsinxdxsin2x
Step 2: (Solve for differentiation)
ddxcosxsinx=sinx×-sin(x)-cosx×cos(x)sin2x∴ddxcos(x)=-sinxandddxsin(x)=cos(x)ddxcosxsinx=-sin2x-cos2xsin2xddxcosxsinx=-sin2x+cos2xsin2xddxcot(x)=-1sin2x∴sin2(x)+cos2(x)=1ddxcot(x)=-cosec2x∴1sin(x)=cscx
Hence, the derivative of cotx is -cosec2x.