How do you find the derivative of y=cos(3x) ?
Solve for differentiation:
Given: dydx=ddx(cos(3x))we know that ddx(cos(x))=-sin(x)
applying chain rule df(g(x))dx=dd(g(x))f(g(x))×dg(x)dx
Here, g(x)=3x and f(g(x))=cos(3x)
ddx(cos(3x))=dd(3x)(cos(3x))×ddx(3x)
dydx=(-sin(3x))ddx(3x)
dydx=(-sin(3x))3dydx=-3sin(3x)
Hence, the derivative of y=cos(3x) is dydx=-3sin3x.