How do you find the derivative of y=tan(x) using first principle ?
Solve by using first principle:
The first principle of calculus can be given as,
f'x=limx→0fx+h-fxh
We have,
fx=y=tanx
Thus,
f'x=limx→0tanx+h-tanxh=limx→0sinx+hcosx+h-sinxcosxh[∵tanx=sinxcosx]=limx→0sinx+h·cosx-cosx+hsinxhcosx+hcosx=limx→0sinx+h+x+sinx+h-x2-sinx+h+x-sinx+h-x2hcosx+hcosx[∵sinacosb=sina+b+sina-b2,cosasinb=sina+b-sina-b2]=limx→0sin2x+h+sinh2-sin2x+h-sinh2hcosx+hcosx=limx→0sinhhcosx+hcosx=limx→0sinhh·1cosx+hcosx=limx→01cosx+hcosx[∵limx→0sinxx=1]=1cosxcosx=sec2x
Therefore, derivative of tan(x) is sec2x.