How do you find the exact functional value sin105° using the cosine sum or difference identity?
Solve for the value of sin105°:
Given: sin105°
We know that, sin180°-α=sinα
And, sin105°=sin180°-75° =sin75°=sin90-15=cos15°∵sin90°-α=cosα=cos45-30
using identity cos(A-B)=cosAcosB+sinAcosB
⇒cos45°-30°=cos45°cos30°+sin45°sin30°=12×32+12×12⇒cos15°=3+122
But,
sin105°=cos15°∴sin105°=3+122
Therefore, sin(105°)=3+122.
How do you find the exact value of cos(36°) using the sum and difference, double angle or half-angle formulas?
How do you find the exact value for tan120°?
How do you find the exact values of cos22.5° using the half-angle formula?
How do you find the exact value of cos-1-12?
How do you find the exact value of cos-2π3?