Wehavelimx→∞x3−2x2+3x−44x3−3x2+2x−1Divideboththenumeratoranddenomitatorbythehigestdegreeofxforthisquestionthehigestpowerisx3limx→∞x3x3−2x2x3+3xx3−4x34x3x3−3x2x3+2xx3−1x3simplifyingwehavelimx→∞1−2x+3x2−4x34−3x+2x2−1x3weknowthatlimx→∞1x=0Thenallthetermsotherthanthe14cancleto0.Therefore,limx→∞x3−2x2+3x−44x3−3x2+2x−1=14