How do you find the value of sin5π12?
Determine the value of sin5π12:
The expression 5π12 can be written as π4+π6.
The trigonometric identity for sum of angles for the sum of angles is sinA+B=sinAcosB+sinBcosA.
Use the identity to find the value of sin5π12.
sinπ4+π6=sinπ4cosπ6+sinπ6cosπ4⇒sinπ4+π6=12×32+12×12⇒sinπ4+π6=1+322
Hence, the required value is 1+322.
How do you find the value of cot0°?
How do you find the value of cot180°?
How do you find the value of cot45°?
How do you find the value of cos(300°)?
How do you find the value of cosπ?