θ can be in the first quadrant 0≤θ≤90 or the fourth quadrant 270≤θ≤360
If θ is in the first quadrant, then
sinθ=513
cosθ=1213
tanθ=512
Therefore,
sin2θ=2sinθcosθ=2×512×1213=120169
cos2θ=cos2θ−sin2θ=(1213)2−(513)2=144169−25169=119169
If θ is in the fourth quadrant, then
sinθ=−513
cosθ=1213
tanθ=−512
Therefore,
sin2θ=2sinθcosθ=2×−512×1213=−120169
cos2θ=cos2θ−sin2θ=(1213)2−(−513)2=144169−25169=119169