How do you prove 2tanx1+tan2x=sin2x?
Proof of given relation:
2tanx1+tan2x=sin2x
Here we have LHS=2tanx1+tan2x
Therefore,
2tanx1+tan2x=2sinxcosxsec2x [∵tanx=sinxcosx,1+tan2x=sec2x]
=2sinxcosx×cos2x [∵secx=1cosx]
=2sinxcosx
=sin2x [∵sin2x=2sinxcosx]
=RHS
Hence, 2tanx1+tan2x=sin2x is proved.