How do you prove cosπ-x=-cosx?
Proof of given relation:
cosπ-x=-cosx
Here we have LHS=cosπ-x
Therefore,
cosπ-x=cosπcosx-sinπsinx [∵cosa-b=cosacosb-sinasinb]
=-1cosx-0sinx [∵cosπ=-1;sinπ=0]
=-cosx
=RHS
Hence, cos(π-x)=-cosx is proved.