How do you prove cos2x=1-2sin2x using other trigonometric identities?
Proof of given relation:
cos2x=1-2sin2x
Here we have LHS=cos2x
We know the indentity,
cos2x=cosx+x [∵cosA+B=cosAcosB-sinAsinB]
cos2x=cos2x-sin2x
=cosxcosx-sinxsinx
=cos2x-sin2x
=1-sin2x-sin2x [∵sin2x+cos2x=1]
=1-2sin2x
=RHS
Hence, cos2x=1-2sin2x using other trigonometric identities is proved.