How do you prove cosπ7cos2π7cos3π7=18?
Simplify the expression:
Consider,
L.H.S=cosπ7cos2π7cos3π7=122cosπ7cos2π7cos3π7=12cos3π7+cos-π7cos3π7∵2cosAcosB=cosA+B+cosA-B=142cos3π7cos3π7+2cos-π7cos3π7=14cos6π7+cos0+cos2π7+cos-4π7∵2cosAcosB=cosA+B+cosA-B=141-12=18=R.H.S
Hence, cos(π7)cos(2π7)cos(3π7)=18 has been proved.
Fill in the blanks with >,< or =
-4+-7____-4--7
How do you prove vectors are collinear ?