wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you prove sin3x=3sinx-4sin3x?


Open in App
Solution

Proof of given relation:

sin3x=3sinx-4sin3x

Here we have LHS=sin3x

Therefore,

sin3x=sinx+2x

=sinxcos2x+cosxsin2x [sina+b=sinacosb+cosasinb]

=sinx1-2sin2x+cosx2cosxsinx [sin2θ=2sinθcosθ;cos2θ=1-2sin2θ]

=sinx-2sin3x+2sinxcos2x

=sinx-2sin3x+2sinx1-sin2x [sin2x+cos2x=1]

=sinx-2sin3x+2sinx-2sin3x

=3sinx-4sin3x

=RHS

Hence, sin3x=3sinx-4sin3x is proved.


flag
Suggest Corrections
thumbs-up
100
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon