How do you prove sin3x=3sinx-4sin3x?
Proof of given relation:
sin3x=3sinx-4sin3x
Here we have LHS=sin3x
Therefore,
sin3x=sinx+2x
=sinxcos2x+cosxsin2x [∵sina+b=sinacosb+cosasinb]
=sinx1-2sin2x+cosx2cosxsinx [∵sin2θ=2sinθcosθ;cos2θ=1-2sin2θ]
=sinx-2sin3x+2sinxcos2x
=sinx-2sin3x+2sinx1-sin2x [∵sin2x+cos2x=1]
=sinx-2sin3x+2sinx-2sin3x
=3sinx-4sin3x
=RHS
Hence, sin3x=3sinx-4sin3x is proved.