How do you prove tan90°+x=-cotx?
Proof of given relation:
tan90°+x=-cotx
Here we have LHS=tan90°+x
Therefore,
tan90°+x=sin90°+xcos90°+x [∵tanx=sinxcosx]
=sin(x)cos(90°)+cos(x)sin(90°)cos(x)cos(90°)–sin(x)sin(90°) [∵sina+b=sinacosb+cosasinb][∵cosa+b=cosacosb-sinasinb]
=cosx+00-sinx [∵sin90°=1;cos90°=0]
=-cosxsinx
=-cotx [∵cotx=cosxsinx]
=RHS
Hence, tan(90°+x)=-cot(x) is proved.