wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you use the fundamental identities to simplify cos2y1-siny?


Open in App
Solution

Simplify cos2y1-siny:

Firstly add and subtract sin2y in numerator of the given trigonometry expression gives :

cos2y1-siny=cos2y+sin2y-sin2y1-siny

Then trigonometry identity cos2θ+sin2θ=1 gives :

cos2y1-siny=1-sin2y1-sinycos2y1-siny=12-sin2y1-siny

Use algebraic identity a2-b2=a+b(a-b) :

cos2y1-siny=1-siny1+siny1-sinycos2y1-siny=1+siny1-siny1-sinycos2y1-siny=1+siny×1cos2y1-siny=1+siny

Therefore, the required simplified form of the given expression is cos2y1-siny=1+siny.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon