wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How do you use the fundamental trigonometric identities to determine the simplified form of the expression?


Open in App
Solution

Trigonometric identities:

The fundamental trigonometric identities are the basic identities:

The reciprocal identities are defined as follows:

sinA=1cosecA,cosA=1secA,tanA=1cotAcscA=1sinA,secA=1cosA,cotA=1tanA
The quotient identities are defined as follows:

tanA=sinAcosA,cotA=cosAsinA

The Pythagorean identities:

sin2A+cos2A=11+tan2A=sec2A1+cot2A=cosec2A

The trigonometric identities help to reduce the complex identities into a simpler form.

Consider an example:

tanβ+cotβcosec2β

Simplify the the expression using trigonometric identities:

tanβ+cotβcosec2β=sinβcosβ+cosβsinβcosec2βtanA=sinAcosA,cotA=cosAsinA=sinβcosβ+cosβsinβ1sin2βcosecA=1sinA=sin2β+cos2βcosβ.sinβ1sin2β=1cosβ.sinβ1sin2βsin2A+cos2B=1=1cosβ.sinβ×sin2β=sinβcosβsinβcosβ=tanβ=tanβ

Thus tanβ+cotβcosec2β=tanβ after simplification of the expression using trigonometric identities


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Projection Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon