How many four-digit different numbers, greater than 5000 can be formed with the digits 1,2,5,9,0 when repetition of digits is not allowed?
Given:
Available digits for filling any place ={1,2,5,9,0}
As the number has to be greater than 5000,
The first digit can either be 5 or 9.
So, number of ways of filling the thousand’s
place =2
Number of ways of filling the hundred’s place =4
Number of ways of filling the ten’s place =3
[Since, repetition is not allowed]
Number of ways of filling the one’s place =2
By using the fundamental principle of Multiplication
∴ Total numbers
=2×4×3×2
=48
Hence,
Required number of four-digit numbers greater
than 5000 are 48.