Since x+y+z+t=29...(i)
and x,y,z,t are integers
∴x≥1,y≥2,z≥3,t≥0
⇒x−1≥0,y−2≥0,z−3≥0,t≥0
Let x1=x−1,x2=y−2,x3=z−3
Or x=x1+1,y=x2+2,z=x3+3 and then x1≥0,x2≥0,x3≥0,t≥0
From (1),
x1+1+x2+1x3+1+t=29
⇒ x1+x2+x3+t=23
Hence total number of solutions
= 23+4−1C4−1
= 26C3=26.25.241.2.3=2600