Let x litre of water is required to be added
Then, total mixture =(x+1125) litres
It is evident that the amount of acid contained in the resulting mixture is 45% of 1125 litres.
This resulting mixture will contains more than 25% but less than 30% acid content.
∴30% of (1125+x)>45% of 1125
And, 25% of (1125+x)<45% of 1125
⇒ 30100(1125+x)>45100×1125
⇒ 30(1125+x)>45×1125
⇒ 30×1125+30x>45×1125
⇒ 30>45×1125−30×1125
⇒ 30x>(45−30)×1125
⇒ x>15×112530=562.5
25% of (1125×x)<45% of 1125
⇒ 25100(1125+x)<45100×1125
⇒ 25(1125+x)>45×1125
⇒ 25×1125+25x>45×1125
⇒ 25x>45×1125−25×1125
⇒ 25x>(45−25)×1125
⇒ x>20×112525=900
∴562.5<x<900
Thus, the required number of litres of water that is to be added will have to be more than 562.5 but less than 900.