The correct option is B 7
We, know that integration is the opposite of differentiation.
To verify which of the following integrands are correctly matched, we will differentiate integrals to see whether it matches to the integrand or not.
A.
∫xndx=xnn+1+CDifferentiating R.H.S we get,ddx(xnn+1+C)=nxn−1n+1≠L.H.SHence, not true.
B.
∫1xdx=ln(x|+CDifferentiating R.H.S we get,ddx(ln(x|+C)=1x=L.H.SHence, true.
C.
∫exdx=ex+CDifferentiating R.H.S we get,ddx(ex+C)=ex=L.H.SHence, true.
D.
∫axdx=axln a+CDifferentiating R.H.S we get,ddx(axln a+C)=ax×ln aln a=ax=L.H.SHence, true.
E.
∫cosx dx=sinx+CDifferentiating R.H.S we get,ddx(sinx+C)=cos x=L.H.SHence, true.
F.
∫sinx dx=cosx+CDifferentiating R.H.S we get,ddx(cosx+C)=−sinx≠L.H.SHence, not true.
G.
∫secxtanx dx=secx+CDifferentiating R.H.S we get,ddx(secx+C)=secxtanx=L.H.SHence, true.
H.
∫cosecx cotx dx=−cosecx+CDifferentiating R.H.S we get,ddx(−cosecx+C)=cosecx cotx=L.H.SHence, true.
I.
∫sec2x dx=tanx+CDifferentiating R.H.S we get,ddx(tanx+C)=sec2x=L.H.SHence, true.
J.
∫cosec2x dx=cotx+CDifferentiating R.H.S we get,ddx(cotx+C)=−cosec2x≠L.H.SHence, not true.
Thus, 7 integrals of particular integrands are correct.