How many pairs of integers are there, satisfying the equation x2+y2=25?
4 pairs
When x = 0, y = 5, x2+y2=02+52=25
When x = 0, y = -5, x2+y2=02+(−5)2=25
When x = 5, y = 0, x2+y2=52+02=25
When x = -5, y = 0, x2+y2=(−5)2+02=25
Hence, 4 pairs [(0,5),(0, -5), (5,0), (-5,0)] of integers are possible satisfying the equation x2+y2=25