Sn=−25A.P=−6,−112,−5firstterm=−6commondifference=−112+6=12ThenweknowSn=n2[2a+(n−1)d]−25=n2[−12+(n−1)12]−50=−12n+n22−n2⇒−2×50=−25n+n2−100=h2−25nh2−25n+100=0[∵n=20issatisfytheequationwetakenumbertermis20]n2−20n−5n+100=0n(n−20)−5(n−20)=0(n−5)(n−20)=0n=5orn=20∴n=20