How many terms of the A.P.−6,−112,−5,.... are needed to give the sum −25?
Consider the given A.P. series −6,−112,−5,........
Then
a=−6
d=−112−(−6)
d=−112+6=12
Sn=−25
We know that,
Sn=n2(2a+(n−1)d)
−25=n2(2×(−6)+(n−1)×12)
−25=n2(−12+n2−12)
−50=n(−252+n2)
−50=n(−25+n2)
−100=n(−25+n)
−100=−25n+n2
n2−25n+100=0
n2−(20+5)n+100=0
n2−20n−5n+100=0
n(n−20)−5(n−20)=0
(n−20)(n−5)=0
If n−20=0 if n−5=0
Then,n=20 n=5
Hence, n=5or20 is the answer.