wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How many terms of the A.P. are needed to give the sum –25?

Open in App
Solution

The given A.P. is 6, 11 2 ,5,.

Let a, d be the first term and common difference of the given A.P.

a=6 d= 11 2 +6 = 1211 2 = 1 2

Let the sum of n terms of the given A.P. be 25.

The formula for the sum of n terms in an A.P. is given by,

S n = n 2 [ 2a+( n1 )d ]

Substitute the values of a, dand S n as 6, 1 2 , 25 in the above expression.

25= n 2 [ 2×( 6 )+( n1 )×( 1 2 ) ] 25×2=n[ 12+ n 2 1 2 ] 50=n[ 25 2 + n 2 ] 50×2=n( 25+n )

Further simplify the above expression.

100=n( 25+n ) 100=n( n25 ) 100= n 2 25n n 2 25n100=0

Further simplify the above equation.

n 2 25n100=0 n 2 5n20n100=0 n( n5 )20( n5 )=0 ( n20 )( n5 )=0

Equate the above expression to obtain the value of n.

n=20or5.

Thus, the total number of terms in the A.P. 6, 11 2 ,5,is 20or5.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon