The given A.P. is −6,− 11 2 ,−5,….
Let a, d be the first term and common difference of the given A.P.
a=−6 d=− 11 2 +6 = 12−11 2 = 1 2
Let the sum of n terms of the given A.P. be −25.
The formula for the sum of n terms in an A.P. is given by,
S n = n 2 [ 2a+( n−1 )d ]
Substitute the values of a, dand S n as −6, 1 2 , −25 in the above expression.
−25= n 2 [ 2×( −6 )+( n−1 )×( 1 2 ) ] −25×2=n[ −12+ n 2 − 1 2 ] −50=n[ − 25 2 + n 2 ] −50×2=n( −25+n )
Further simplify the above expression.
−100=n( −25+n ) 100=n( n−25 ) 100= n 2 −25n n 2 −25n−100=0
Further simplify the above equation.
n 2 −25n−100=0 n 2 −5n−20n−100=0 n( n−5 )−20( n−5 )=0 ( n−20 )( n−5 )=0
Equate the above expression to obtain the value of n.
n=20 or 5.
Thus, the total number of terms in the A.P. −6,− 11 2 ,−5,…is 20 or 5.