Let n be the number of terms needed to make the sum 55.
Here, first term (a) = - 15, common difference (d) = - 13 + 15 = 2
Sum of n terms of an AP, Sn=n2[2a+(n−1)d]
⇒ −55=n2[2(−15)+(n−1)2] [∵Sn=−55(given)]
⇒ −55=−15n+n(n−1)
⇒ n2−16n+55=0
⇒ n2−11n−5n+55=0 [by factorization method]
⇒ n(n−11)−5(n−11)=0
⇒ (n−11)(n−5)=0
∴ n=5,11
Hence, either 5 or 11 terms are needed to make the sum - 55.