How many terms of the AP 3,7,11,15,... willl make the sum 406 ?
(a) 10 (b) 12 (c) 14 (d) 20
AP:3,7,11,15,..a=3d=7−3=4Sn=406We know that,Sn=n2[2a+(n−1)d]n2[2(3)+(n−1)4]=406n2[6+4n−4]=406n2[4n+2]=406n[2n+1]=4062n2+n−406=02n2−28n+29n−406=02n(n−14)+29(n−14)=0(2n+29)(n−14)=0n=−292 or 14
n cannot be negative.
So n = 14
Hence, 14 terms will make the sum 406.