How many terms of the AP 9, 17, 25, ... must be taken so that their sum is 636?
A.P = 9,17,25
a=9
d=17-9 =8
Sum of n terms, Sn=n2[2a+(n−1)d]
636=n2[2(9)+(n−1)8]
636=n2[18+8n−8]
636=n2[10+8n]
1272=10n+8n2
8n2+10n−1272=0
2[4n2+5n−636]=0
4n2+5n−636=0
4n2+53n−48n−636=0
n(4n+53)−12(4n+53)=0
(n−12)(4n+53)=0
n−12=0
n=12
12 terms must be given to sum of 636