Let there be n terms in this A.P.
For this A.P, a = 9
d=a2−a1=17−9=8As Sn=n2[2a+(n−1)d]636=n2[2×a+(n−1)×8]636=n2[18+(n−1)×8]636=n[9+4n−4]636=n(4n+5)4n2+5n−636=04n2+53n−48n−636=0n(4n+53)−12(4n+53)=0(4n+53)(n−12)=0Either 4n+53=0 or n−12=0n=(−534) or n=12
As the number of terms can neither be negative nor fractional, n = 12.