9, 17, 25….
a1=9
a2=17
d=a2−a1=17−9=18
Sn=636
Sn=n2(2a+(n−1)d)
636=n2(2×9+(n−1)8)
1272=n(18+8x−8)
8n2+10n−1272=0
4n2+5n−636=0
D=b2−4ac=25−4×4×(−636)
=25+10176
=10201
x=−b±√D2a
=−5±√102012×4
x=−5+1018,−5−1018
=12,−51/4(Req.)
∴n=12
How many terms of the AP: 9, 17, 25, ... must be added to get a sum of 636?___