How many terms of the sequence √3,3,3√3,.... must be taken to make the sum 39+13√3 ?
√3,3,3√3
Sn=a(rn−1)r−1
a=√3, r=3√3=√3, Sn=39+13√3
Putting into formula
39+13√3=√3((√3)n−1)√3−1
39+13√3=(√3n1−√3)√3−1
(39+13√3)(√3−1)=(√3)n+1−√3
39√3−39+39−13√3=(√3)n+1−√3
26√3+√3=(√3)n+1
(27√3)1=(√3)n+1
(√3)6(√3)1=(√3)n+1
7=n+1
⇒n=6