Let 5x2+10xy−y2 is A more than 2x2+4xy+2y2
∴5x2+10xy−y2=A+(2x2+4xy+2y2)
⇒A=(5x2+10xy−y2)−(2x2+4xy+2y2)
(Multiply the minus (−) sign inside the bracket)
A=5x2+10xy−y2−2x2−4xy−2y2
A=(5x2−2x2)+(10xy−4xy)+(−y2−2y2)
A(5−2)x2+(10−2)xy+(−1−2)y2
A=3x2+6xy−3y2
Hence, the expression 5x2+10xy=y2) is (3x2+6xy−3y2) more than 2x2+4xy+2y2.