We know that Euclid's division Lemma is x and y for any two positive integers, there exist unique integers q and r satisfactorily x = yq + r, where 0 ≤ r <y.
In case r=0 then y will be the HCF.
1445=1190×1+255
1190=255×4+170
255=170×1+85
170=85×2+0
We have found r=0
Hence, HCF(1190,1445)=85
So, now
85 = 255 - 170
[Put 255=1445-1190 and 170=1190-1020]
85=(1445-1190)-(1190-1020)
[Put 1020=255×4]
85=(1445-1190)-(1190 - 255×4)
[Open brackets,]
85=1445-1190-1190+(255×4)
[Put 255= 1445-1190]
85=1445-(2×1190)+(1445-1190)×4
85=1445-(2×1190)+(1445×4) - (1190x4)
85=1445+(1445×4) - (2×1190) - (1190×4)
85 =(1445×5) - (1190×6)
85= -1190×6 + 1445×5
85=1190×(-6)+1445×5
85=1190m+1445n
(where m=-6 and n=5)