How to find missing frequency in median
For example:
If the median of the distribution given below is 46, find the value of the missing frequencies.
class interval | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency | 12 | 30 | f1 | 65 | f2 | 25 | 18 |
Let f1 be the frequency of the class 30 - 40 and f2 be the frequency of 50 - 60
Then f1+f2=Total frequency−Sum of the given frequency
f1+f2=229−(12+30+65+25+18)
=229−150
=79
f1+f2=79
Since the given median 46 lies in the class 40 - 50, it is the median class.
Using Median formula,
Median =l+hf(N2−C)
46=40+1065[114.5−(12+30+f1)]
46−40=(72.5−f165)×10
6=(72.5−f16.5)
f1=72.5−39=33.5=34 (∵ frequency is never a fraction)
∴f2=79−34=45
f1+f2=79