wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How to geometrically prove that cos(x+y)=cosxcosysinxsiny

Open in App
Solution

To prove :cos(x+y)=cosxcosysinxsiny
Consider the unit circle with centre at origin.
Let x be the angle P4OP1 and y be angle P1OP2 then (x+y) is angle P4OP2.
Let (-y)be angle P4OP3 then P1,P2,P3 and P4 woill have coordinates
P1 (cosx,sinx)
P2 (cos(x+y),sin(x+y))
P3 (cos(y),sin(y))
P4 (1,0)

Consider triangles P1OP3 and P2OP4 (Both are congruent)
P1P3=P2P4
Using distance formula
P1P23=[cosxcos(y)]2+[sinxsin(y)]2
=[cosxcos(y)]2+[sinx+sin(y)]2
=cos2x+cos2y2cosxcosy+sin2x+sin2y+2sinxsiny
[sin2x+cos2y=1]
=22(cosxcosysinxsiny)
Similarly,
P2P24=(cos(x+y)1)2+sin2(x+y)
=cos2(x+y)+12cos(x+y)+sin2(x+y)
=22cos(x+y)
P2P24=2[1cos(x+y)]
P1P3=P2P4
P1P23=P2P24
22(cosxcosysinxsiny)=22cos(x+y)
2(cosxcosysinxsiny)=2cos(x+y)
cos(x+y)=cosx cosysinxsiny

Hence Proved.


flag
Suggest Corrections
thumbs-up
656
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon