How to geometrically prove that cos(x+y)=cosxcosy−sinxsiny
To prove :cos(x+y)=cosxcosy−sinxsiny
Consider the unit circle with centre at origin.
Let x be the angle P4OP1 and y be angle P1OP2 then (x+y) is angle P4OP2.
Let (-y)be angle P4OP3 then P1,P2,P3 and P4 woill have coordinates
P1 (cosx,sinx)
P2 (cos(x+y),sin(x+y))
P3 (cos(−y),sin(−y))
P4 (1,0)
Consider triangles P1OP3 and P2OP4 (Both are congruent)
∴P1P3=P2P4
Using distance formula
P1P23=[cosx−cos(−y)]2+[sinx−sin(−y)]2
=[cosx−cos(y)]2+[sinx+sin(y)]2
=cos2x+cos2y−2cosxcosy+sin2x+sin2y+2sinxsiny
[∵sin2x+cos2y=1]
=2−2(cosxcosy−sinxsiny)
Similarly,
P2P24=(cos(x+y)−1)2+sin2(x+y)
=cos2(x+y)+1−2cos(x+y)+sin2(x+y)
=2−2cos(x+y)
P2P24=2[1−cos(x+y)]
∵P1P3=P2P4
∴P1P23=P2P24
∴2−2(cosxcosy−sinxsiny)=2−2cos(x+y)
⇒2(cosxcosy−sinxsiny)=2cos(x+y)
∴cos(x+y)=cosx cosy−sinxsiny
Hence Proved.