How to integrate lnx?
Integrate the given expression :
Let I=∫lnxdx
We will use the method of by parts to solve the integration.
We now that
∫udv=uv-∫vdu
Let ,
⇒v=x
Therefore,
I=∫lnxdx=xlnx-∫dlnxdx·xdx=xlnx-∫1x·xdx∵dlnxdx=1x=xlnx-∫dx=xlnx-x+c
∴∫lnxdx=xlnx-x+c
Hence, the value of the integrating ∫lnxdx is xlnx-x+c
how to integrate sin^6x