How to prove nCr+nCr-1=n+1Cr
Prove the given expression :
L.H.S=nCr+nCr-1=n!r!(n-r)!+n!r-1!(n-r-1)![∵nCr=n!r!(n-r)!]=n!1r!(n-r)!+1r-1!(n-r+1)!=n!r-1!1r(n-r)!+1(n-r+1)!=n!r-1!(n-r)!1r+1n-r+1=n!r-1!(n-r)!n-r+1+r(n-r+1)r=n!r-1!(n-r)!n+1(n-r+1)r=n!(n+1)rr-1!(n-r)!1(n-r+1)∵rr-1!=r!=(n+1)!r!(n-r)!·1(n+1-r)∵n!n+1!=n+1!=(n+1)!r!(n+1-r)!=n+1Cr[∵nCr=n!r!(n-r)!]=R.H.S
So, L.HS=R.HS
Hence,nCr+nCr-1=n+1Cr
Let r and n be positive integers such that 1≤r≤n. Then prove the following :
(i) nCrnCr−1=n−r+1r (ii) nn−1Cr−1=(n−r+1)nCr−1 (iii) nCrn−1Cr−1=nr (iv) nCr+2nCr−1+nCr−2=n+2Cr