wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How to prove nCr+nCr-1=n+1Cr


Open in App
Solution

Prove the given expression :

L.H.S=nCr+nCr-1=n!r!(n-r)!+n!r-1!(n-r-1)![nCr=n!r!(n-r)!]=n!1r!(n-r)!+1r-1!(n-r+1)!=n!r-1!1r(n-r)!+1(n-r+1)!=n!r-1!(n-r)!1r+1n-r+1=n!r-1!(n-r)!n-r+1+r(n-r+1)r=n!r-1!(n-r)!n+1(n-r+1)r=n!(n+1)rr-1!(n-r)!1(n-r+1)rr-1!=r!=(n+1)!r!(n-r)!·1(n+1-r)n!n+1!=n+1!=(n+1)!r!(n+1-r)!=n+1Cr[nCr=n!r!(n-r)!]=R.H.S

So, L.HS=R.HS

Hence,nCr+nCr-1=n+1Cr


flag
Suggest Corrections
thumbs-up
55
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Beyond Binomials
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon