Prove that 2cos2Q−1=1−tan2Q1+tan2Q.
2cos2Q−1=1−tan2Q1+tan2Q
Taking RHS
=1−tan2Q1+tan2Q
=1−sin2Qcos2Q1+sin2Qcos2Q (tanQ=sinQcosQ)
=(cos2Q−sin2Qcos2Q)(cos2Q+sin2Qcos2Q)
=cos2Q−sin2Qcos2Q×cos2Qcos2Q+sin2Q
=cos2Q−sin2Q1 (cos2Q+sin2Q=1)
=cos2−(1−cos2Q) (sin2Q=1−cos2Q)
=2cos2Q−1= L.H.S
so, 2cos2Q−1=1−tan2Q1+tan2Q