The correct option is C I1=I3=I4=0,I2≠0
I1=π2∫0sinx−cosx1+sinxcosxdx
=π2∫0sin(π2−x)−cos(π2−x)1+sin(π2−x)cos(π2−x)dx
=π2∫0cosx−sinx1+sinxcosxdx=−I1
⇒I1=0
I3=0 as sin3x is odd
I4=1∫0ln(1−xx)dx
=1∫0ln(1−(1−x)1−x)dx
=1∫0lnx1−xdx=−I4
⇒I4=0
I2=2π∫0cos6xdx=2∫π0cos6xdx≠0⎧⎪⎨⎪⎩∵2a∫0f(x) dx=2a∫0f(x) dx, when f(x)=f(2a−x)⎫⎪⎬⎪⎭