cos 3θ = 4cos3 θ - 3cosθ
4cos3 θ = cos3θ + 3 cosθ
Taking θ = 10°
4cos3 10° = cos30° + 3cos10° ... ( 1 )
sin3θ = 3sinθ - 4sin3 θ
4sin3 θ = 3sinθ - sin3θ
Taking θ = 20°
4sin3 20° = 3sin20° - sin60° ... ( 2 )
Adding ( 1 ) and ( 2 ),
4(cos3 10° + sin3 20°) = 3(cos10° + sin20°) + cos30° - sin60°
4(cos3 10° + sin3 20°) = 3(cos10° + sin20°) [as we know that cos30=sin60]