(i)cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ
=(cos3θ+cos7θ)+2cos5θ(cosθ+cos5θ)+2cos3θ
=2cos(3θ+7θ2)cos(3θ−7θ2)+2cos5θ2cos(θ+5θ2)cos(θ−5θ2)+2cos3θ
=2cos5θcos2θ+2cos5θ2cos3θcos2θ+2cos3θ
=2cos5θ(cos2θ+1)2cos3θ(cos2θ+1)
=cos5θcos3θ
=cos(3θ+2θ)cos3θ
=cos3θcos2θ−sin3θsin2θcos3θ
=cos2θ−tan3θsin2θ
(ii)sinA+sin3A+sin5A+sin7AcosA+cos3A+cos5A+cos7A
=(sinA+sin7A)+(sin3A+sin5A)(cosA+cos7A)+(cos3A+cos5A)
=2sin(A+7A2)cos(A−7A2)+2sin(3A+5A2)cos(3A−5A2)2cos(A+7A2)cos(A−7A2)+2cos(3A+5A2)cos(3A−5A2)
=2sin4Acos3A+2sin4AcosA2cos4Acos3A+2cos4AcosA
=2sin4A(cos3A+cosA)2cos4A(cos3A+cosA)
=sin4Acos4A=tan4A
Hence proved.