The correct option is C Both I and II are true
b=cos6sin24cos72=cos6sin(90−66)cos72
⇒b=(2cos6cos66)cos722
⇒b=(cos(6+66)+cos(6−66))cos722
⇒b=(cos72+cos60)cos722=2cos272+cos724
⇒b=1+cos144+cos724=1+cos(180−36)+cos724
⇒b=1+cos72−cos364=1−2sin(72+362)sin(72−362)4
⇒b=1−2sin54sin184=1−2cos36sin184
⇒b=1−(2sin18cos18cos36cos18)4
⇒b=1−2sin36cos362cos184=1−sin722cos184
⇒b=1−sin722cos(90−72)4=1−sin722sin724
⇒b=18
a=cos12cos24cos36cos48cos72cos84
⇒a=(2sin12cos12)cos24cos36cos48cos72cos842sin12
⇒a=2sin24cos24cos36cos48cos72cos844sin12
⇒a=−2sin48cos48cos36cos72cos(180−84)8sin12
⇒a=−2sin96cos96cos36cos7216sin12
⇒a=−sin192cos36cos7216sin12=−sin(180+12)cos36cos7216sin12
⇒a=sin12(2sin36cos36)cos7232sin12sin36=2sin72cos7264sin36
⇒a=sin14464sin36=sin(180−144)64sin36=164
Therefore, both the statements are correct.
Hence, option 'C' is correct.