The correct option is
B only II is true
I: cosx+cosy=13........1
sinx+siny=14........(2)
Squaring and adding (1) and (2), we get
cos2x+cos2y+2cosxcosy+sin2x+sin2y+2sinxsiny=19+116......(3)
2+2cos(x−y)=25144
2+4cos2x−y2−2=25144
cos2x−y2=25144×4
Squaring and subtracting (2) from (1), we get
cos2x+cos2y+2cosxcosy−sin2x−sin2y−2sinxsiny=19−116
cos2x+cos2y+2cos(x+y)=7144
2cos(x+y)cos(x−y)+2cos(x+y)=7144
2cos(x+y)(cos(x−y)+1)=7144
2cos(x+y)(2cos2(x−y)/2−1+1)=7144
Substituting value of (3)
2cos(x+y)⋅2⋅25144×4=7144
cos(x+y)=725
II: sinx+siny=14.........(1)
sinx−siny=15..........(2)
Dividing (2) by (1), we get
sinx+sinysinx−siny=54
⇒2sin(x+y2)cos(x−y2)2cos(x+y2)sin(x−y2)=54
⇒cot(x−y2)cot(x+y2)=54
⇒4cot(x−y2)=5cot(x+y2)