Consider the given integral.
I=∫xcosx+sinxxsinxdx
Let t=xsinx
dtdx=xcosx+sinx×1
dt=(xcosx+sinx)dx
Therefore,
I=∫1tdt
I=ln(t)+C
Thus,
I=ln(xsinx)+C
Hence, this is the answer.
y=sinxx+cosx, then dydx=?