1:∫13+4cosxdxt=tanx2=12sec2x2dx=dtI:∫2dt[3+4(1−t21+t2)](1+t2)=∫2dt3(1+t2)+4(1−t2)=∫2dt7−t2=2√7[tan−1(t√7)]=1√7log⎡⎢ ⎢ ⎢⎣√7+tanx2√7−tanx2⎤⎥ ⎥ ⎥⎦+C2:∫dxcosx−sinx=1√2log[tan(x2−3π8)]+Cr=√a2+b2=√1+1=√2
sinx−cosx=√2sin(x+θ)=sin(x−π4)=sin(x+θ)x=−π4or3π4
∴∫dxcosxsinx=1√2log[tan12(x−3π4)]+C=1√2log[tan(x2−3π8)]+C