wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I:acosx+bsinxccosx+dsinxdx=ac+bdc2+d2x+adbcc2+d2log|ccosx+dsinx|+k
II:cosx+sinxsinxcosxdx=log|sinxcosx|+k Which of the following is true

A
Only I
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Only II
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Both I and II
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
neither I nor II are true
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C Both I and II
Statement I acosx+bsinxccosx+dsinxdx=ac+bdc2+d2x+adbcc2+d2log|ccosx+dsinx|+k
Let I=acosx+bsinxccosx+dsinxdx
Here numerator can be written as
acosx+bsinx=A(ccosx+dsinx)+B(csinx+dcosx) ....(1)
acosx+bsinx=(Ac+Bd)cosx+(AdBc)sinx
On comparing , we get
Ac+Bd=a
AdBc=b
Solving these equations, we get
A=ac+bdd2+c2 ; B=adbcd2+c2
Substituting these values in (1), we get
acosx+bsinx=(ac+bd)d2+c2(ccosx+dsinx)+(adbc)d2+c2(csinx+dcosx)
So, the given integral becomes
I=(ac+bd)d2+c21dx+(adbc)d2+c2(csinx+dcosx)ccosx+dsinxdx
Put ccosx+dsinx=t
(csinx+dcosx)dx=dt
I=(ac+bd)d2+c2x+(adbc)d2+c21tdt
I=(ac+bd)d2+c2x+(adbc)d2+c2log|ccosx+dsinx|+k
Statement II: cosx+sinxsinxcosxdx=log|sinxcosx|+k
Let I=cosx+sinxsinxcosxdx
Put sinxcosx=t
(cosx+sinx)dx=dt
I=1tdt
I=log|t|+k
I=log|sinxcosx|+k
Hence, both statements are correct

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon