The correct option is C Both I and II
Statement I ∫acosx+bsinxccosx+dsinxdx=ac+bdc2+d2x+ad−bcc2+d2log|ccosx+dsinx|+k
Let I=∫acosx+bsinxccosx+dsinxdx
Here numerator can be written as
acosx+bsinx=A(ccosx+dsinx)+B(−csinx+dcosx) ....(1)
⇒acosx+bsinx=(Ac+Bd)cosx+(Ad−Bc)sinx
On comparing , we get
Ac+Bd=a
Ad−Bc=b
Solving these equations, we get
A=ac+bdd2+c2 ; B=ad−bcd2+c2
Substituting these values in (1), we get
acosx+bsinx=(ac+bd)d2+c2(ccosx+dsinx)+(ad−bc)d2+c2(−csinx+dcosx)
So, the given integral becomes
I=(ac+bd)d2+c2∫1dx+(ad−bc)d2+c2∫(−csinx+dcosx)ccosx+dsinxdx
Put ccosx+dsinx=t
(−csinx+dcosx)dx=dt
I=(ac+bd)d2+c2x+(ad−bc)d2+c2∫1tdt
I=(ac+bd)d2+c2x+(ad−bc)d2+c2log|ccosx+dsinx|+k
Statement II: ∫cosx+sinxsinx−cosxdx=log|sinx−cosx|+k
Let I=∫cosx+sinxsinx−cosxdx
Put sinx−cosx=t
⇒(cosx+sinx)dx=dt
I=∫1tdt
I=log|t|+k
⇒I=log|sinx−cosx|+k
Hence, both statements are correct