The correct option is B Both I and II are true
a=sinθsin(60−θ)sin(60+θ)
⇒a=sinθ[2sin(60−θ)sin(60+θ)]2
⇒a=sinθ[cos(60−θ−60−θ)−cos(60−θ+60+θ)]2{2sinAsinB=cos(A−B)−cos(A+B)}
⇒a=sinθ[cos2θ−cos120]2=sinθ[1−2sin2θ+12]2
⇒a=3sinθ−4sin3θ4=14sin3θ
b=cosθcos(120−θ)cos(120+θ)
⇒b=cosθ[2cos(120−θ)cos(120+θ)]2
⇒b=cosθ[cos(120−θ−60−θ)+cos(120−θ+120+θ)]2{2cosAcosB=cos(A−B)+cos(A+B)}
⇒b=cosθ[cos2θ+cos240]2=cosθ[2cos2θ−1−12]2
⇒b=4cos3θ−3cosθ4=14cos3θ
Hence, option 'C' is correct.