1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Standard Formulae - 3
i d y d x=y t...
Question
(i)
d
y
d
x
=
y
tan
x
,
y
0
=
1
(ii)
2
x
d
y
d
x
=
5
y
,
y
1
=
1
(iii)
d
y
d
x
=
2
e
2
x
y
2
,
y
0
=
-
1
(iv)
cos
y
d
y
d
x
=
e
x
,
y
0
=
π
2
(v)
d
y
d
x
=
2
x
y
,
y
0
=
1
(vi)
d
y
d
x
=
1
+
x
2
+
y
2
+
x
2
y
2
,
y
0
=
1
(vii)
x
y
d
y
d
x
=
x
+
2
y
+
2
,
y
1
=
-
1
(viii)
d
y
d
x
=
1
+
x
+
y
2
+
x
y
2
when y = 0, x = 0 [NCERT EXEMPLAR]
(ix)
2
y
+
3
-
x
y
d
y
d
x
=
0
, y(1) = −2 [NCERT EXEMPLAR]
Open in App
Solution
(
i
)
d
y
d
x
=
y
tan
x
,
y
0
=
1
⇒
1
y
d
y
=
tan
x
d
x
Integrating
both
sides
,
we
get
∫
1
y
d
y
=
∫
tan
x
d
x
⇒
log
y
=
log
sec
x
+
C
.
.
.
.
.
(
1
)
We
know
that
at
x
=
0
and
y
=
1
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
log
1
=
log
1
+
C
⇒
C
=
0
Substituting
the
value
of
C
in
(
1
)
,
we
get
log
y
=
log
sec
x
+
0
⇒
y
=
sec
x
Hence
,
y
=
sec
x
,
where
x
∈
-
π
2
,
π
2
,
is
the
required
solution
.
(
ii
)
2
x
d
y
d
x
=
5
y
,
y
1
=
1
⇒
2
y
d
y
=
5
x
d
x
Integrating
both
sides
,
we
get
2
∫
1
y
d
y
=
5
∫
1
x
d
x
⇒
2
log
y
=
5
log
x
+
C
.
.
.
.
.
(
1
)
We
know
that
at
x
=
1
and
y
=
1
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
2
log
1
=
5
log
1
+
C
⇒
C
=
0
Substituting
the
value
of
C
in
(
1
)
,
we
get
2
log
y
=
5
log
x
+
0
⇒
y
=
x
5
2
Hence
,
y
=
x
5
2
is
the
required
solution
.
(
iii
)
d
y
d
x
=
2
e
2
x
y
2
,
y
0
=
-
1
⇒
1
y
2
d
y
=
2
e
2
x
d
x
Integrating
both
sides
,
we
get
∫
1
y
2
d
y
=
2
∫
e
2
x
d
x
⇒
-
1
y
=
e
2
x
+
C
.
.
.
.
.
(
1
)
We
know
that
at
x
=
0
,
y
=
-
1
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
1
=
1
+
C
⇒
C
=
0
Substituting
the
value
of
C
in
(
1
)
,
we
get
-
1
y
=
e
2
x
⇒
y
=
-
e
-
2
x
Hence
,
y
=
-
e
-
2
x
is
the
required
solution
.
(
iv
)
cos
y
d
y
d
x
=
e
x
,
y
0
=
π
2
⇒
cos
y
d
y
=
e
x
d
x
Integrating
both
sides
,
we
get
∫
cos
y
d
y
=
∫
e
x
d
x
⇒
sin
y
=
e
x
+
C
.
.
.
.
.
(
1
)
We
know
that
at
x
=
0
,
y
=
π
2
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
1
=
1
+
C
⇒
C
=
0
Substituting
the
value
of
C
in
(
1
)
,
we
get
sin
y
=
e
x
⇒
y
=
sin
-
1
e
x
Hence
,
y
=
sin
-
1
e
x
is
the
required
solution
.
(
v
)
d
y
d
x
=
2
x
y
,
y
0
=
1
⇒
1
y
d
y
=
2
x
d
x
Integrating
both
sides
,
we
get
∫
1
y
d
y
=
∫
2
x
d
x
log
y
=
x
2
+
C
.
.
.
.
.
(
1
)
We
know
that
at
x
=
0
,
y
=
1
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
0
=
0
+
C
⇒
C
=
0
Substituting
the
value
of
C
in
(
1
)
,
we
get
log
y
=
x
2
⇒
y
=
e
x
2
Hence
,
y
=
e
x
2
is
the
required
solution
.
(
vi
)
d
y
d
x
=
1
+
x
2
+
y
2
+
x
2
y
2
,
y
0
=
1
⇒
d
y
d
x
=
1
+
x
2
1
+
y
2
⇒
d
y
1
+
y
2
=
1
+
x
2
d
x
Integrating
both
sides
,
we
get
∫
d
y
1
+
y
2
=
∫
1
+
x
2
d
x
⇒
tan
-
1
y
=
x
+
x
3
3
+
C
.
.
.
.
.
(
1
)
We
know
that
at
x
=
0
,
y
=
1
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
π
4
=
0
+
0
+
C
⇒
C
=
π
4
Substituting
the
value
of
C
in
(
1
)
,
we
get
tan
-
1
y
=
x
+
x
3
3
+
π
4
Hence
,
tan
-
1
y
=
x
+
x
3
3
+
π
4
is
the
required
solution
.
(
vii
)
x
y
d
y
d
x
=
x
+
2
y
+
2
,
y
1
=
-
1
⇒
y
y
+
2
d
y
=
x
+
2
x
d
x
⇒
y
+
2
-
2
y
+
2
d
y
=
x
+
2
x
d
x
⇒
1
-
2
y
+
2
d
y
=
1
+
2
x
d
x
Integrating
both
sides
,
we
get
∫
1
-
2
y
+
2
d
y
=
∫
1
+
2
x
d
x
⇒
y
-
2
log
y
+
2
=
x
+
2
log
x
+
C
.
.
.
.
.
(
1
)
We
know
that
at
x
=
1
,
y
=
-
1
.
Substituting
the
values
of
x
and
y
in
(
1
)
,
we
get
-
1
-
2
log
1
=
1
+
2
log
1
+
C
⇒
-
1
=
1
+
C
⇒
C
=
-
2
Substituting
the
value
of
C
in
(
1
)
,
we
get
y
-
2
log
y
+
2
=
x
+
2
log
x
-
2
Hence
,
y
-
2
log
y
+
2
=
x
+
2
log
x
-
2
is
the
required
solution
.
(viii)
d
y
d
x
=
1
+
x
+
y
2
+
x
y
2
⇒
d
y
d
x
=
1
+
x
+
y
2
1
+
x
⇒
d
y
d
x
=
1
+
x
1
+
y
2
⇒
d
y
1
+
y
2
=
1
+
x
d
x
⇒
∫
d
y
1
+
y
2
=
∫
1
+
x
d
x
⇒
tan
-
1
y
=
x
+
x
2
2
+
C
.
.
.
.
.
1
Now
,
tan
-
1
0
=
0
+
0
+
C
∵
y
=
0
,
x
=
0
⇒
C
=
0
Substituting
the
value
of
C
in
(
1
)
,
we
get
tan
-
1
y
=
x
+
x
2
2
⇒
y
=
tan
x
+
x
2
2
(ix)
2
y
+
3
-
x
y
d
y
d
x
=
0
⇒
2
y
+
3
=
x
y
d
y
d
x
⇒
2
x
d
x
=
y
y
+
3
d
y
⇒
2
x
d
x
=
y
+
3
-
3
y
+
3
d
y
⇒
2
x
d
x
=
1
-
3
y
+
3
d
y
⇒
∫
2
x
d
x
=
∫
1
-
3
y
+
3
d
y
⇒
2
log
x
=
y
-
3
log
y
+
3
+
C
⇒
log
x
2
+
log
y
+
3
3
=
y
+
C
⇒
log
x
2
y
+
3
3
=
y
+
C
.
.
.
.
.
1
⇒
log
1
2
-
2
+
3
3
=
-
2
+
C
⇒
C
=
2
Substituting
the
value
of
C
in
(
1
)
,
we
get
log
x
2
y
+
3
3
=
y
+
2
⇒
x
2
y
+
3
3
=
e
y
+
2
Suggest Corrections
0
Similar questions
Q.
(i)
d
y
d
x
=
y
tan
x
,
y
0
=
1
(ii)
2
x
d
y
d
x
=
5
y
,
y
1
=
1
(iii)
d
y
d
x
=
2
e
2
x
y
2
,
y
0
=
-
1
(iv)
cos
y
d
y
d
x
=
e
x
,
y
0
=
π
2
(v)
d
y
d
x
=
2
x
y
,
y
0
=
1
(vi)
d
y
d
x
=
1
+
x
2
+
y
2
+
x
2
y
2
,
y
0
=
1
(vii)
x
y
d
y
d
x
=
x
+
2
y
+
2
,
y
1
=
-
1
(viii)
d
y
d
x
=
1
+
x
+
y
2
+
x
y
2
when y = 0, x = 0 [NCERT EXEMPLAR]
(ix)
2
y
+
3
-
x
y
d
y
d
x
=
0
, y(1) = −2 [NCERT EXEMPLAR]
(x)
e
x
tan
y
d
x
+
2
-
e
x
sec
2
y
d
y
=
0
,
y
0
=
π
4
[CBSE 2018]
Q.
(i)
d
y
d
x
=
y
tan
x
,
y
0
=
1
(ii)
2
x
d
y
d
x
=
5
y
,
y
1
=
1
(iii)
d
y
d
x
=
2
e
2
x
y
2
,
y
0
=
-
1
(iv)
cos
y
d
y
d
x
=
e
x
,
y
0
=
π
2
(v)
d
y
d
x
=
2
x
y
,
y
0
=
1
(vi)
d
y
d
x
=
1
+
x
2
+
y
2
+
x
2
y
2
,
y
0
=
1
(vii)
x
y
d
y
d
x
=
x
+
2
y
+
2
,
y
1
=
-
1
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
(xii)
Q.
Solve each of the following initial value problems:
(i)
y
'
+
y
=
e
x
,
y
0
=
1
2
(ii)
x
d
y
d
x
-
y
=
log
x
,
y
1
=
0
(iii)
d
y
d
x
+
2
y
=
e
-
2
x
sin
x
,
y
0
=
0
(iv)
x
d
y
d
x
-
y
=
x
+
1
e
-
x
,
y
1
=
0
(v)
1
+
y
2
d
x
+
x
-
e
-
tan
-
1
y
d
x
=
0
,
y
0
=
0
(vi)
d
y
d
x
+
y
tan
x
=
2
x
+
x
2
tan
x
,
y
0
=
1
(vii)
x
d
y
d
x
+
y
=
x
cos
x
+
sin
x
,
y
π
2
=
1
(viii)
d
y
d
x
+
y
cot
x
=
4
x
cosec
x
,
y
π
2
=
0
(ix)
d
y
d
x
+
2
y
tan
x
=
sin
x
;
y
=
0
when
x
=
π
3
(x)
d
y
d
x
-
3
y
cot
x
=
sin
2
x
;
y
=
2
when
x
=
π
2
(xi)
d
y
d
x
+
y
cot
x
=
2
cos
x
,
y
π
2
=
0
(xii)
d
y
=
cos
x
2
-
y
cos
e
c
x
d
x
(xiii)
tan
x
d
y
d
x
=
2
x
tan
x
+
x
2
-
y
;
tan
x
≠
0
given that y = 0 when
x
=
π
2
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Standard Formulae 3
MATHEMATICS
Watch in App
Explore more
Standard Formulae - 3
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app