(ii)
tanA−sinAtanA+sinA=secA−1secA+1
Taking LHS
tanA−sinAtanA+sinA
=sinAcosA−sinAsinAcosA+sinA
=sinAsecA−sinAsinAsecA+sinA
=secA−1secA+1
LHS=RHS
Hence proved.
(i)
(1+tanA+secA)(1+cotA−cosecA)
(1+sinAcosA+1cosA)(1+cosAsinA−1sinA)
=(cosA+sinA+1cosA)(cosA+sinA−1sinA)
=(cosA+sinA)2−1sinAcosA
=sin2A+cos2A+2sinAcosA−1sinAcosA
=1+2sinAcosA−1sinAcosA
=2